Главная страница сайта
Олимпиада по математике 9 10 11 класс
Олимпиада по физике 9 10 11 класс
Олимпиада по информатике 9 10 11 класс
Олимпиада по химии 9 10 11 класс
Задачи олимпиады по математике 9 класс
Задачи олимпиады по математике 10 класс
Задачи олимпиады по математике 11 класс
Решение олимпиадных задач по математике 9 класс
Решение олимпиадных задач по математике 10 класс
Решение олимпиадных задач по математике 11 класс
Задачи олимпиады по физике 9 класс
Задачи олимпиады по физике 10 класс
Задачи олимпиады по физике 11 класс
Решение олимпиадных задач по физике 9 класс
Решение олимпиадных задач по физике 10 класс
Решение олимпиадных задач по физике 11 класс
Задачи олимпиады по информатике 9 класс
Задачи олимпиады по информатике 10 класс
Задачи олимпиады по информатике 11 класс
Решение олимпиадных задач по информатике 9 класс
Решение олимпиадных задач по информатике 10 класс
Решение олимпиадных задач по информатике 11 класс
Задачи олимпиады по химии 9 класс
Задачи олимпиады по химии 10 класс
Задачи олимпиады по химии 11 класс
Решение олимпиадных задач по химии 9 класс
Решение олимпиадных задач по химии 10 класс
Решение олимпиадных задач по химии 11 класс

Вероятность (А)(1) Имеется три ящика, в каждом из которых лежат шары с номерами от 0 до 9. Из каждого ящика вынимается по одному шару. Какова вероятность того, что
а) вынуты три единицы;
б) вынуты три равных числа?.


Вероятность (А)(2) Пишется наудачу некоторое двузначное число. Какова вероятность того, что сумма цифр этого числа равна 5?
.


Текстовая(1) 4. Задача.
Имеется две кучки камней: в одной - 1998, в другой - 2000. За ход разрешается убрать любое количество камней, но только из одной кучки. Проигрывает тот, кому нечего брать. Докажите, что при игре вдвоем, первый имеет выигрышную стратегию (т.е. для делающего первый ход можно написать конечный набор правил, следуя которым, он обязательно выиграет).

4. Решение.
Первым своим ходом первый игрок должен уравнять количество камней в кучках, т.е. взять два камня из второй кучки. Затем на любой ход соперника он должен отвечать "симметричным" ходом - брать столько же камней сколько и соперник, но только из другой кучки. Нетрудно заметить, что эта стратегия обеспечит выигрыш первого игрока при условии, если второй игрок на каждом своем ходу будет брать ненулевое количество камней из какой-либо кучки.


Параметр(1) 5. Задача (9 кл.)
При каком наименьшем натуральном значении a уравнение
x2+2ax-3a+7
= 2x

имеет ровно два решения?

5. Решение.
Перепишем это уравнение в виде x2 + (2a-2)x - 3a+7 = 0. Это квадратное уравнение, оно имеет ровно два решения, если его дискриминант строго больше нуля. Вычисляя дискриминант, получаем, что условием наличия ровно двух корней является выполнение неравенства a2+a-6 > 0. Решая неравенство, находим a < -3 или a > 2. Первое из неравенств, очевидно, решений в натуральных числах не имеет, а наименьшим натуральным решением второго является число 3.

5. Ответ: 3.


Функция (В)(1)Найдите положительное число `p`, такое что прямая `y=0.5x+p` и координатные оси образуют треугольник, площадь которого равна `100`.


Олимпиадные задания с ответами по математике


Олимпиадные задания с ответами по математике


Олимпиадные задания с ответами по математике

Задачи олимпиады по математике 9 класс

Задачи олимпиадного типа:

-- 1--
Условие
Найти наименьшее значение выражения x+1/(4x) при положительных значениях x .
Решение
x+1/4x=(x+(1/4)/x-1)+1=(x2-x+1/4)/x+1=((x-1/2)2)/x+1.

Из этого выражения видно, что при положительных значениях переменной x оно всегда больше единицы, за исключением значения x=1/2 , когда выражение принимает значение 1, которое и будет минимальным значением выражения при положительных x .
Ответ
1.00

-- 2 --

Доказать, что существует бесконечно много простых чисел.

Задача решается методом от противного. Предположив, что простых чисел конечное число N, рассматриваем число, следующее за их произведением . Очевидно, что оно не делится ни на одно из использованных в произведении простых чисел, давая в остатке 1. Значит, либо оно само простое, либо оно делится на простое число, не учтённое в нашем (предположительно полном) списке. В любом случае, простых чисел, по крайней мере, N+1. Противоречие с предположением о конечности.



Олимпиадные задачи по математике 9 класс

1.

Корень из числа 49 можно извлечь по такой «формуле»: ? 49 = 4 + ?9.
Существуют ли другие двузначные числа, квадратные корни из которых извлекаются аналогичным образом и являются целыми? Укажите все такие двузначные числа.

2.

ABC – равнобедренный треугольник с вершиной А. ?А=27°. Точка D симметрична точке В относительно А. Чему равен угол ?BCD?

3.

Мальчик стоит на автобусной остановке и мёрзнет, а автобуса нет. Ему хочется пройтись до следующей остановки. Мальчик бегает вчетверо медленнее автобуса и может увидеть автобус на расстоянии 2 км. До следующей остановки ровно километр. Имеет ли смысл идти, или есть риск упустить автобус?
Про числа aи b известно, что a = b+ 1. Может ли оказаться так, что a4 = b4?

4.

Какое наименьшее количество клеток квадрата 5 x 5 нужно закрасить, чтобы в любом квадрате 3 x 3, являющемся его частью, было ровно 4 закрашенных клетки?


Ответы и решене задач олимпиады по математике 9 класс



1.

Да, существуют: 64 и 81.
Рассмотрим все двузначные числа, являющиеся квадратами целых чисел. Корни из чисел 16, 25 и 36 не могут быть извлечены указанным способом, так как квадратные корни из их последних цифр не являются целыми. Числа 49, 64 и 81 являются решениями.
Ответ в задаче не изменится, если не требовать, чтобы корень был целым. 10a + b = a2 + 2a?b + b. Так как в левой части равенства стоит целое число, то и число, стоящее в правой части, должно быть целым. Отсюда следует, что b = 0, 1, 4 или 9, то есть a + ?b - целое число.

2.

Ответ: 90°.

3.

Ответ: имеет смысл идти.
Пусть мальчик пошел к следующей остановке и в какой-то момент заметил автобус. Скорость автобуса в четыре раза больше скорости мальчика, поэтому за одно и то же время автобус проезжает расстояние в четыре раза больше. Пусть мальчик пробежит х км, тогда автобус проедет 4х км. В случае, если они двигаются навстречу друг другу, до встречи с автобусом мальчик пробежит 2/5 км. Это значит, что, отойдя от остановки не более, чем на 2/5 км, мальчик сможет успеть на автобус, побежав назад.
В случае, если автобус догоняет мальчика, мальчик успеет пробежать 2/3 км до момента, когда автобус его догонит.
Это означает, что он сможет успеть на автобус, если до следующей остановки осталось не более 2/3 км, то есть, если он успел пройти не менее 1/3 км до момента, когда заметил автобус. Так как, 1/3 < 2/5 , то у мальчика всегда будет возможность успеть на автобус и имеет смысл идти.

4.

Ответ: да, может. Пусть а = 1/2, b = -1/2, тогда a4 = b4 = 1/16. Можно доказать, что этот пример – единственный (от учащихся это не требуется). Действительно, a4 = b4 ? |a| = |b|. Случай a = b невозможен, случай a = -b дает указанный пример.

5.

Ответ: 7 клеток.

Олимпиадные задания с ответами по математике 10 класс

1.

Постройте эскиз графика функции:.
2.

Найдите все значения числового параметра а, при которых корни уравнения положительны.

3.

Общая хорда двух пересекающихся окружностей служит для одной из них стороной правильного вписанного четырехугольника, а для другой стороной правильного вписанного шестиугольника. Найдите расстояние между центрами окружностей, если радиус меньшей окружности равен 10 см?

4.

М. В. Ломоносов тратил одну денежку на хлеб и квас. Когда цены выросли на 20%, на ту же денежку он приобретал полхлеба и квас. Хватит ли той же денежки ему хотя бы на квас, если цены вырастут еще на 20%?
Ответ. Хватит.

5.

Существует ли выпуклый многоугольник, число диагоналей которого в 10 раз больше числа его сторон?

Ответы и решене задач олимпиады по математике 10 класс

1. Постройте эскиз графика функции: .


Решение.

Отсюда график:


 



2. Найдите все значения числового параметра а, при которых корни уравнения положительны.

Ответ. .

Решение. Если (а+1)=0, то уравнение будет линейным, и его корнем при а=-1 является х=1. Подходит.
Если а?-1, то уравнение будет квадратным. По теореме Виета его корни положительны тогда и только тогда, когда выполняется

.
С учетом первого случая получаем ответ .

3. Общая хорда двух пересекающихся окружностей служит для одной из них стороной правильного вписанного четырехугольника, а для другой стороной правильного вписанного шестиугольника. Найдите расстояние между центрами окружностей, если радиус меньшей окружности равен 10 см?

Ответ. .


Решение.

 

 

 

 

 

Рис1.         Рис 2.
В этой задаче возможны два варианта расположения центра меньшей окружности: Снаружи и внутри большей окружности. Оба варианта расположения изображены на рисунках 1 и 2. В первом случае расстояние между центрами окружностей равно сумме длин высоты равнобедренного прямоугольного треугольника, из которых сложен вписанный квадрат, и высоты равностороннего треугольника, из которого сложен правильный вписанный шестиугольник. Во втором случае – их разность.
Так как диагональ квадрата является диаметром меньшей окружности, то длина стороны квадрата равна см, и равна длине общей хорды окружностей. Следовательно, радиус большей окружности равен см. Тогда длина первой высоты равна см, а длина второй высоты равна .

4. М. В. Ломоносов тратил одну денежку на хлеб и квас. Когда цены выросли на 20%, на ту же денежку он приобретал полхлеба и квас. Хватит ли той же денежки ему хотя бы на квас, если цены вырастут еще на 20%?
Ответ. Хватит.

Решение. Пусть первоначально квас стоил х% от денежки, а хлеб – (100-х)%. После подорожания цен на 20%, получим следующий баланс . Отсюда . При двукратном подорожании цен эта величина увеличится в 1,44 раза и достигнет величины 96%, что меньше стоимости денежки.

5. Существует ли выпуклый многоугольник, число диагоналей которого в 10 раз больше числа его сторон?

Ответ. Существует.
Решение.

Число диагоналей выпуклого многоугольника считается по формуле: . (Можно считать этот факт известным). Составим и решим уравнение. . Таким образом, условию задачи удовлетворяет выпуклый двадцатитрехугольник.


Олимпиадные задания с ответами по математике 11 класс

1.
Найдите такое натуральное число k, что 2008! делится на 2007k, но не делится на 2008k. (Напомним, чтоn! = 1·2·3·4·… ·n).

2.
Может ли вершина параболы y = 4x2 – 4(a + 1)x + a лежать во второй координатной четверти при каком-нибудь значении а?

3.
(an) – арифметическая прогрессия с разностью 1. Известно, что S2008 - наименьшая среди всех Sn (меньше суммы первых n членов для любого другого значения n). Какие значения может принимать первый член прогрессии?

4.
Внутри равностороннего треугольника со стороной 8 находится равнобедренный треугольник АВС, в котором АС = ВС = 1, ?С=120°. Две вершины А и В могут лежать либо на одной стороне большого треугольника, либо на двух. Где при этом может оказаться вершина тупого угла – точка С? Нарисуйте это геометрическое место точек и найдите длину соответствующей линии.

5.
Клетчатая прямоугольная сетка m x n связана из веревочек единичной длины. Двое делают ходы по очереди. За один ход можно разрезать (посередине) не разрезанную ранее единичную веревочку. Если не останется ни одного замкнутого веревочного контура, то игрок, сделавший последний ход, считается проигравшим. Кто из игроков победит при правильной игре и как он должен для этого играть?


Ответы и решене задач олимпиады по математике 11 класс



1.
Разложим число 2007 на простые множители: 2007 = 32 ? 223.
В разложении на простые множители числа 2007! показатель степени у числа 3 будет достаточно большим, так как множитель 3 входит в разложение каждого третьего числа. Множитель 223 входит только в разложение чисел вида 223р, где р – натуральное число, не превосходящее 9. Таким образом, в разложение числа 2007! на простые множители число 223 войдет с показателем 9. Следовательно, число 2008! будет делиться на 2007k, где k=9.

2.
Координаты вершины параболы x0 = (a + 1)/2, y0 = 4((a + 1)/2)2 - 4(a +1)(a + 1)/2 + a = -a2 - a - 1 = -(a + 1/2)2 - 3/4. Так как у0 < 0 при любых значениях а, то во второй координатной четверти вершина параболы находиться не может.

3.
Так как разность прогрессия положительна, то прогрессия – возрастающая. Следовательно, описанная ситуация возможна тогда и только тогда, когда члены прогрессия с первого по 2008-ой – отрицательны, а начиная с 2009-го – положительны. Таким образом, S2008 будет наименьшей, тогда и только тогда, когда а2008 < 0, a2009 > 0. Отсюда получаем систему неравенств



4.
Если вершина А и В лежат на одной стороне треугольника, то вершина С лежит на отрезке прямой, параллельной этой стороне. Длина этого отрезка равна 8 - ?3. Пусть вершины А и В лежат на двух сторонах равностороннего треугольника с общей вершиной О. Тогда вокруг четырехугольника АСВО можно описать окружность (четырехугольник является вписанным). В этой окружности углы ВАС и ВОС равны, так как опираются на одну и ту же дугу с хордой ВС. Следовательно, угол ВОС равен 30°. Следовательно, третья вершина треугольника – точка С – лежит на биссектрисе угла равностороннего треугольника. Длина соответствующего отрезка биссектрисы равна 1. Итак, точка С может лежать на стороне некоторого равностороннего треугольника и на некоторых отрезках биссектрис внутренних углов этого треугольника. Длина шести звеньев этой линии равна 27 - 3?3.



5.
если m + n – четно, то выигрывает второй игрок, если m + n – нечетно, то выигрывает первый. В начале игры веревочек единичной длины было m(n + 1) + n(m + 1) = 2mn + m + n. Это число имеет ту же четность, что и число m + n. Последний ход в игре разрушает последний замкнутый контур. Докажем, что граница любого замкнутого конура содержит четное количество веревочек единичной длины. Действительно, рассмотрим границу произвольного замкнутого контура. Каждый вертикальный столбец исходной сетки содержит четное количество горизонтальных веревочек единичной длины из этой границы (возможно, и нулевое), т. к. войдя в замкнутый контур, например, снизу, мы обязаны из него выйти. Аналогично, каждая горизонтальная строка исходной сетки содержит четное количество вертикальных веревочек единичной длины. Таким образом, общее количество единичных веревочек на границе замкнутого контура – четно. Выигрышная стратегия для любого игрока состоит в том, чтобы не разрушать последний замкнутый контур, пока есть такая возможность.




    Яндекс.Метрика                              В начало сайта


Олимпиадные задания с ответами по математике - www.fizmatolimp.ru      Copyright © All rights reserved